Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(3): e0166023, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421167

RESUMEN

Rotavirus (RV) NSP2 is a multifunctional RNA chaperone that exhibits numerous activities that are essential for replication and viral genome packaging. We performed an in silico analysis that highlighted a distant relationship of NSP2 from rotavirus B (RVB) to proteins from other human RVs. We solved a cryo-electron microscopy structure of RVB NSP2 that shows structural differences with corresponding proteins from other human RVs. Based on the structure, we identified amino acid residues that are involved in RNA interactions. Anisotropy titration experiments showed that these residues are important for nucleic acid binding. We also identified structural motifs that are conserved in all RV species. Collectively, our data complete the structural characterization of rotaviral NSP2 protein and demonstrate its structural diversity among RV species.IMPORTANCERotavirus B (RVB), also known as adult diarrhea rotavirus, has caused epidemics of severe diarrhea in China, India, and Bangladesh. Thousands of people are infected in a single RVB epidemic. However, information on this group of rotaviruses remains limited. As NSP2 is an essential protein in the viral life cycle, including its role in the formation of replication factories, it may be a target for future antiviral strategy against viruses with similar mechanisms.


Asunto(s)
Proteínas de Unión al ARN , Rotavirus , Proteínas no Estructurales Virales , Adulto , Humanos , Microscopía por Crioelectrón , Diarrea/virología , ARN/metabolismo , Rotavirus/metabolismo , Infecciones por Rotavirus/virología , Proteínas no Estructurales Virales/química , Proteínas de Unión al ARN/química
2.
Commun Biol ; 6(1): 1065, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857704

RESUMEN

TRPM8 is a non-selective cation channel permeable to both monovalent and divalent cations that is activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. It is a therapeutic target for anticancer drug development, and its modulators can be utilized for several pathological conditions. Here, we present a cryo-electron microscopy structure of a human TRPM8 channel in the closed state that was solved at 2.7 Å resolution. Our structure comprises the most complete model of the N-terminal pre-melastatin homology region. We also visualized several lipids that are bound by the protein and modeled how the human channel interacts with icilin. Analyses of pore helices in available TRPM structures showed that all these structures can be grouped into different closed, desensitized and open state conformations based on the register of the pore helix S6 which positions particular amino acid residues at the channel constriction.


Asunto(s)
Canales Catiónicos TRPM , Humanos , Microscopía por Crioelectrón , Proteínas de la Membrana/metabolismo , Temperatura , Canales Catiónicos TRPM/metabolismo
3.
Nat Struct Mol Biol ; 30(5): 650-660, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081315

RESUMEN

In bacteria, one type of homologous-recombination-based DNA-repair pathway involves RecFOR proteins that bind at the junction between single-stranded (ss) and double-stranded (ds) DNA. They facilitate the replacement of SSB protein, which initially covers ssDNA, with RecA, which mediates the search for homologous sequences. However, the molecular mechanism of RecFOR cooperation remains largely unknown. We used Thermus thermophilus proteins to study this system. Here, we present a cryo-electron microscopy structure of the RecF-dsDNA complex, and another reconstruction that shows how RecF interacts with two different regions of the tetrameric RecR ring. Lower-resolution reconstructions of the RecR-RecO subcomplex and the RecFOR-DNA assembly explain how RecO is positioned to interact with ssDNA and SSB, which is proposed to lock the complex on a ssDNA-dsDNA junction. Our results integrate the biochemical data available for the RecFOR system and provide a framework for its complete understanding.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/genética , Recombinación Homóloga , Bacterias/metabolismo , ADN de Cadena Simple , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Reparación del ADN
4.
Nucleic Acids Res ; 50(17): 10026-10040, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36107766

RESUMEN

Abortive infection (Abi) is a bacterial antiphage defense strategy involving suicide of the infected cell. Some Abi pathways involve polymerases that are related to reverse transcriptases. They are unique in the way they combine the ability to synthesize DNA in a template-independent manner with protein priming. Here, we report crystal and cryo-electron microscopy structures of two Abi polymerases: AbiK and Abi-P2. Both proteins adopt a bilobal structure with an RT-like domain that comprises palm and fingers subdomains and a unique helical domain. AbiK and Abi-P2 adopt a hexameric and trimeric configuration, respectively, which is unprecedented for reverse transcriptases. Biochemical experiments showed that the formation of these oligomers is required for the DNA polymerization activity. The structure of the AbiK-DNA covalent adduct visualized interactions between the 3' end of DNA and the active site and covalent attachment of the 5' end of DNA to a tyrosine residue used for protein priming. Our data reveal a structural basis of the mechanism of highly unusual template-independent protein-priming polymerases.


Asunto(s)
ADN , ADN Polimerasa Dirigida por ARN , Secuencia de Aminoácidos , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , ADN Polimerasa Dirigida por ARN/metabolismo , Tirosina
5.
Mol Cell ; 82(14): 2618-2632.e7, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35654042

RESUMEN

Tn7 is a bacterial transposon with relatives containing element-encoded CRISPR-Cas systems mediating RNA-guided transposon insertion. Here, we present the 2.7 Å cryoelectron microscopy structure of prototypic Tn7 transposase TnsB interacting with the transposon end DNA. When TnsB interacts across repeating binding sites, it adopts a beads-on-a-string architecture, where the DNA-binding and catalytic domains are arranged in a tiled and intertwined fashion. The DNA-binding domains form few base-specific contacts leading to a binding preference that requires multiple weakly conserved sites at the appropriate spacing to achieve DNA sequence specificity. TnsB binding imparts differences in the global structure of the protein-bound DNA ends dictated by the spacing or overlap of binding sites explaining functional differences in the left and right ends of the element. We propose a model of the strand-transfer complex in which the terminal TnsB molecule is rearranged so that its catalytic domain is in a position conducive to transposition.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Elementos Transponibles de ADN/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
6.
Sci Rep ; 11(1): 15741, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344911

RESUMEN

Gold nanoparticles (AuNPs) decorated with biologically relevant molecules have variety of applications in optical sensing of bioanalytes. Coating AuNPs with small nucleotides produces particles with high stability in water, but functionality-compatible strategies are needed to uncover the full potential of this type of conjugates. Here, we demonstrate that lipoic acid-modified dinucleotides can be used to modify AuNPs surfaces in a controllable manner to produce conjugates that are stable in aqueous buffers and biological mixtures and capable of interacting with nucleotide-binding proteins. Using this strategy we obtained AuNPs decorated with 7-methylguanosine mRNA 5' cap analogs and showed that they bind cap-specific protein, eIF4E. AuNPs decorated with non-functional dinucleotides also interacted with eIF4E, albeit with lower affinity, suggesting that eIF4E binding to cap-decorated AuNPs is partially mediated by unspecific ionic interactions. This issue was overcome by applying lipoic-acid-Tris conjugate as a charge-neutral diluting molecule. Tris-Lipo-diluted cap-AuNPs conjugates interacted with eIF4E in fully specific manner, enabling design of functional tools. To demonstrate the potential of these conjugates in protein sensing, we designed a two-component eIF4E sensing system consisting of cap-AuNP and 4E-BP1-AuNP conjugates, wherein 4E-BP1 is a short peptide derived from 4E-BP protein that specifically binds eIF4E at a site different to that of the 5' cap. This system facilitated controlled aggregation, in which eIF4E plays the role of the agent that crosslinks two types of AuNP, thereby inducing a naked-eye visible absorbance redshift. The reported AuNPs-nucleotide conjugation method based on lipoic acid affinity for gold, can be harnessed to obtain other types of nucleotide-functionalized AuNPs, thereby paving the way to studying other nucleotide-binding proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Oro/química , Nanopartículas del Metal/química , Nucleótidos/metabolismo , Fragmentos de Péptidos/química , Caperuzas de ARN/química , Proteínas Adaptadoras Transductoras de Señales/genética , Técnicas Biosensibles/métodos , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Humanos , Nucleótidos/química , Unión Proteica , Biosíntesis de Proteínas , Caperuzas de ARN/genética
7.
J Virol ; 95(18): e0084821, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232702

RESUMEN

Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA (dsDNA), a crucial process for the replication of retroviruses. Foamy viruses (FVs) possess a unique RT, which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. Here, we report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. We also describe a structure of MFV PR-RT with an RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer. Cryo-electron microscopy reconstruction of the full-length MFV PR-RT-dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. IMPORTANCE Reverse transcriptases (RTs) are intriguing enzymes converting single-stranded RNA to dsDNA. Their activity is essential for retroviruses, which are divided into two subfamilies differing significantly in their life cycles: Orthoretrovirinae and Spumaretrovirinae. The latter family is much more ancient and comprises five genera. A unique feature of foamy viral RTs is that they contain N-terminal protease (PR) domains, which are not present in orthoretroviral enzymes. So far, no structural information for full-length foamy viral PR-RT interacting with nucleic substrates has been reported. Here, we present crystal and cryo-electron microscopy structures of marmoset foamy virus (MFV) PR-RT. These structures revealed the mode of binding of RNA/DNA and dsDNA substrates. Moreover, unexpectedly, the structures and biochemical data showed that foamy viral PR-RT can adopt both a monomeric configuration, which is observed in our structures in the presence of an RNA/DNA hybrid, and an asymmetric dimer arrangement, which we observed in the presence of dsDNA.


Asunto(s)
ADN/metabolismo , ADN Polimerasa Dirigida por ARN/química , ARN/metabolismo , Ribonucleasa H/química , Spumavirus/enzimología , Proteasas Virales/química , Proteínas Virales/química , Microscopía por Crioelectrón , ADN/química , Conformación Proteica , ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Ribonucleasa H/metabolismo , Proteasas Virales/metabolismo , Proteínas Virales/metabolismo
8.
FEBS J ; 287(24): 5304-5322, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32255262

RESUMEN

Vimentin intermediate filaments are a significant component of the cytoskeleton in cells of mesenchymal origin. In vivo, filaments assemble and disassemble and thus participate in the dynamic processes of the cell. Post-translational modifications (PTMs) such as protein phosphorylation regulate the multiphasic association of vimentin from soluble complexes to insoluble filaments and the reverse processes. The thiol side chain of the single vimentin cysteine at position 328 (Cys328) is a direct target of oxidative modifications inside cells. Here, we used atomic force microscopy, electron microscopy and a novel hydrogen-deuterium exchange mass spectrometry (HDex-MS) procedure to investigate the structural consequences of S-nitrosylation and S-glutathionylation of Cys328 for in vitro oligomerisation of human vimentin. Neither modification affects the lateral association of tetramers to unit-length filaments (ULF). However, S-glutathionylation of Cys328 blocks the longitudinal assembly of ULF into extended filaments. S-nitrosylation of Cys328 does not hinder but slows down the elongation. Likewise, S-glutathionylation of preformed vimentin filaments causes their extensive fragmentation to smaller oligomeric species. Chemical reduction of the S-glutathionylated Cys328 thiols induces reassembly of the small fragments into extended filaments. In conclusion, our in vitro results suggest S-glutathionylation as a candidate PTM for an efficient molecular switch in the dynamic rearrangements of vimentin intermediate filaments, observed in vivo, in response to changes in cellular redox status. Finally, we demonstrate that HDex-MS is a powerful method for probing the kinetics of vimentin filament formation and filament disassembly induced by PTMs.


Asunto(s)
Cisteína/metabolismo , Citoesqueleto/patología , Glutatión/metabolismo , Filamentos Intermedios/patología , Procesamiento Proteico-Postraduccional , Vimentina/química , Vimentina/metabolismo , Cisteína/química , Citoesqueleto/metabolismo , Glutatión/química , Humanos , Técnicas In Vitro , Filamentos Intermedios/metabolismo , Cinética , Oxidación-Reducción , Fosforilación , Multimerización de Proteína
9.
Nat Commun ; 9(1): 97, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311576

RESUMEN

Nuclease and helicase activities play pivotal roles in various aspects of RNA processing and degradation. These two activities are often present in multi-subunit complexes from nucleic acid metabolism. In the mitochondrial exoribonuclease complex (mtEXO) both enzymatic activities are tightly coupled making it an excellent minimal system to study helicase-exoribonuclease coordination. mtEXO is composed of Dss1 3'-to-5' exoribonuclease and Suv3 helicase. It is the master regulator of mitochondrial gene expression in yeast. Here, we present the structure of mtEXO and a description of its mechanism of action. The crystal structure of Dss1 reveals domains that are responsible for interactions with Suv3. Importantly, these interactions are compatible with the conformational changes of Suv3 domains during the helicase cycle. We demonstrate that mtEXO is an intimate complex which forms an RNA-binding channel spanning its entire structure, with Suv3 helicase feeding the 3' end of the RNA toward the active site of Dss1.


Asunto(s)
Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Candida glabrata/enzimología , Candida glabrata/genética , Candida glabrata/metabolismo , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/química , Endorribonucleasas/genética , Exorribonucleasas/química , Exorribonucleasas/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Conformación de Ácido Nucleico , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/genética , Unión Proteica , Conformación Proteica , ARN/química , ARN/genética , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , ARN Mitocondrial , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
10.
Phytochemistry ; 142: 1-10, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28654769

RESUMEN

Phytocystatins are a group of proteins with significant potential to regulate activities of cysteine proteinases of native and pest/pathogen origins. The two-domain triticale (x Triticosecale Wittm.) phytocystatin TrcC-8 was characterized in this study. This protein belongs to the second group of phytocystatins and contains all the conserved sequences and motifs as well as both N-terminal (CY) and C-terminal (CY-L) domains that are characteristic of phytocystatins with the C-terminal extension. We demonstrated that TrcC-8 forms stable dimers with a significantly reduced inhibitory activity against papain compared to the activity of monomers, indicating the regulatory nature of the oligomerization. Moreover, according to our research, only the N-terminal domain possesses the ability to form dimers, indicating that this part of TrcC-8 is involved in the dimerization of the full-length protein. Homology modelling of TrcC-8 strongly suggests distinct specificities for the CY and CY-L domains, confirmed in experiments with inhibition of the papain. Our results suggest that the CY domain of TrcC-8 may, although markedly weakly and suboptimally, interact with papain in an analogous mode to tarocystatin, while the CY-L domain of TrcC-8 has distinct specificity than tarocystatin.


Asunto(s)
Proteasas de Cisteína/metabolismo , Papaína/metabolismo , Proteínas de Plantas/química , Triticale/química , Cistatinas/química , Cistatinas/metabolismo , Dimerización , Proteínas de Plantas/aislamiento & purificación
11.
Front Immunol ; 8: 444, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473830

RESUMEN

Hemagglutinin glycoprotein (HA) is a principle influenza vaccine antigen. Recombinant HA-based vaccines become a potential alternative for traditional approach. Complexity and variation of HA N-glycosylation are considered as the important factors for the vaccine design. The number and location of glycan moieties in the HA molecule are also crucial. Therefore, we decided to study the effect of N-glycosylation pattern on the H5 antigen structure and its ability to induce immunological response. We also decided to change neither the number nor the position of the HA glycosylation sites but only the glycan length. Two variants of the H5 antigen with high mannose glycosylation (H5hm) and with low-mannose glycosylation (H5Man5) were prepared utilizing different Pichia strains. Our structural studies demonstrated that only the highly glycosylated H5 antigen formed high molecular weight oligomers similar to viral particles. Further, the H5hm was much more immunogenic for mice than H5Man5. In summary, our results suggest that high mannose glycosylation of vaccine antigen is superior to the low glycosylation pattern. Our findings have strong implications for the recombinant HA-based influenza vaccine design.

12.
Sci Rep ; 7: 40405, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28074868

RESUMEN

Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a ß-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Nucleoplasminas/metabolismo , Multimerización de Proteína , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Área Bajo la Curva , Dicroismo Circular , Modelos Moleculares , Peso Molecular , Dominios Proteicos , Estructura Secundaria de Proteína , Transporte de Proteínas , Dispersión del Ángulo Pequeño , Soluciones , Fracciones Subcelulares/metabolismo , Difracción de Rayos X
13.
Open Biol ; 6(2): 150238, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26911623

RESUMEN

The kinetochore provides a physical connection between microtubules and the centromeric regions of chromosomes that is critical for their equitable segregation. The trimeric Mis12 sub-complex of the Drosophila kinetochore binds to the mitotic centromere using CENP-C as a platform. However, knowledge of the precise connections between Mis12 complex components and CENP-C has remained elusive despite the fundamental importance of this part of the cell division machinery. Here, we employ hydrogen-deuterium exchange coupled with mass spectrometry to reveal that Mis12 and Nnf1 form a dimer maintained by interacting coiled-coil (CC) domains within the carboxy-terminal parts of both proteins. Adjacent to these interacting CCs is a carboxy-terminal domain that also interacts with Nsl1. The amino-terminal parts of Mis12 and Nnf1 form a CENP-C-binding surface, which docks the complex and thus the entire kinetochore to mitotic centromeres. Mutational analysis confirms these precise interactions are critical for both structure and function of the complex. Thus, we conclude the organization of the Mis12-Nnf1 dimer confers upon the Mis12 complex a bipolar, elongated structure that is critical for kinetochore function.


Asunto(s)
Drosophila/metabolismo , Cinetocoros/metabolismo , Mapas de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Cinetocoros/química , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular
14.
Nat Commun ; 7: 10433, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26804377

RESUMEN

CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein-protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions.


Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Postepy Biochem ; 62(3): 383-394, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28132494

RESUMEN

For many years two techniques have dominated structural biology - X-ray crystallography and NMR spectroscopy. Traditional cryo-electron microscopy of biological macromolecules produced macromolecular reconstructions at resolution limited to 6-10 Å. Recent development of transmission electron microscopes, in particular the development of direct electron detectors, and continuous improvements in the available software, have led to the "resolution revolution" in cryo-EM. It is now possible to routinely obtain near-atomic-resolution 3D maps of intact biological macromolecules as small as ~100 kDa. Thus, cryo-EM is now becoming the method of choice for structural analysis of many complex assemblies that are unsuitable for structure determination by other methods.


Asunto(s)
Microscopía por Crioelectrón/métodos
16.
FEBS J ; 281(17): 3920-32, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25041569

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) biosynthesis is a multi-step process in which specific chaperones are involved. Recently, a novel polypeptide, Rubisco Accumulation Factor 1 (RAF1), has been identified as a protein that is necessary for proper assembly of this enzyme in maize cells (Zea mays). However, neither its specific function nor its mode of action have as yet been determined. The results presented here show that the prokaryotic homolog of RAF1 from Thermosynechococcus elongatus is expressed in cyanobacterial cells and interacts with a large Rubisco subunit (RbcL). Using a heterologous expression system, it was demonstrated that this protein promotes Rubisco assembly in Escherichia coli cells. Moreover, when co-expressed with RbcL alone, a stable RbcL-RAF1 complex is formed. Molecular mass determination for this Rubisco assembly intermediate by size-exclusion chromatography coupled with multi-angle light scattering indicates that it consists of an RbcL dimer and two RAF1 molecules. A purified RbcL-RAF1 complex dissociated upon addition of a small Rubisco subunit (RbcS), leading to formation of the active holoenzyme. Moreover, titration of the octameric (RbcL8) core of Rubisco with RAF1 results in disassembly of such a stucture and creation of an RbcL-RAF1 intermediate. The results presented here are the first attempt to elucidate the role of cyanobacterial Rubisco Accumulation Factor 1 in the Rubisco biosynthesis process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Chaperonas Moleculares/metabolismo , Ribulosa-Bifosfato Carboxilasa/biosíntesis , Escherichia coli/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo
17.
Mol Cell ; 54(5): 751-65, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24768538

RESUMEN

MicroRNAs (miRNAs) control gene expression by regulating mRNA translation and stability. The CCR4-NOT complex is a key effector of miRNA function acting downstream of GW182/TNRC6 proteins. We show that miRNA-mediated repression requires the central region of CNOT1, the scaffold protein of CCR4-NOT. A CNOT1 domain interacts with CNOT9, which in turn interacts with the silencing domain of TNRC6 in a tryptophan motif-dependent manner. These interactions are direct, as shown by the structure of a CNOT9-CNOT1 complex with bound tryptophan. Another domain of CNOT1 with an MIF4G fold recruits the DEAD-box ATPase DDX6, a known translational inhibitor. Structural and biochemical approaches revealed that CNOT1 modulates the conformation of DDX6 and stimulates ATPase activity. Structure-based mutations showed that the CNOT1 MIF4G-DDX6 interaction is important for miRNA-mediated repression. These findings provide insights into the repressive steps downstream of the GW182/TNRC6 proteins and the role of the CCR4-NOT complex in posttranscriptional regulation in general.


Asunto(s)
ARN Helicasas DEAD-box/química , MicroARNs/genética , Proteínas Proto-Oncogénicas/química , Interferencia de ARN , Factores de Transcripción/química , Sustitución de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Nucleic Acids Res ; 41(6): 3845-58, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23404585

RESUMEN

The RNA exosome is an essential ribonuclease complex involved in RNA processing and decay. It consists of a 9-subunit catalytically inert ring composed of six RNase PH-like proteins forming a central channel and three cap subunits with KH/S1 domains located at the top. The yeast exosome catalytic activity is supplied by the Dis3 (also known as Rrp44) protein, which has both endo- and exoribonucleolytic activities and the nucleus-specific exonuclease Rrp6. In vitro studies suggest that substrates reach the Dis3 exonucleolytic active site following passage through the ring channel, but in vivo support is lacking. Here, we constructed an Rrp41 ring subunit mutant with a partially blocked channel that led to thermosensitivity and synthetic lethality with Rrp6 deletion. Rrp41 mutation caused accumulation of nuclear and cytoplasmic exosome substrates including the non-stop decay reporter, for which degradation is dependent on either endonucleolytic or exonucleolytic Dis3 activities. This suggests that the central channel also controls endonucleolytic activity. In vitro experiments performed using Chaetomium thermophilum exosomes reconstituted from recombinant subunits confirmed this notion. Finally, we analysed the impact of a lethal mutation of conserved basic residues in Rrp4 cap subunit and found that it inhibits digestion of single-stranded and structured RNA substrates.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Núcleo Celular/metabolismo , Chaetomium/enzimología , Citoplasma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Genes Letales , Mutación , Fenotipo , Estabilidad del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
EMBO J ; 31(6): 1605-16, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22314234

RESUMEN

The THO complex is a key factor in co-transcriptional formation of export-competent messenger ribonucleoprotein particles, yet its structure and mechanism of chromatin recruitment remain unknown. In yeast, this complex has been described as a heterotetramer (Tho2, Hpr1, Mft1, and Thp2) that interacts with Tex1 and mRNA export factors Sub2 and Yra1 to form the TRanscription EXport (TREX) complex. In this study, we purified yeast THO and found Tex1 to be part of its core. We determined the three-dimensional structures of five-subunit THO complex by electron microscopy and located the positions of Tex1, Hpr1, and Tho2 C-terminus using various labelling techniques. In the case of Tex1, a ß-propeller protein, we have generated an atomic model which docks into the corresponding part of the THO complex envelope. Furthermore, we show that THO directly interacts with nucleic acids through the unfolded C-terminal region of Tho2, whose removal reduces THO recruitment to active chromatin leading to mRNA biogenesis defects. In summary, this study describes the THO architecture, the structural basis for its chromatin targeting, and highlights the importance of unfolded regions of eukaryotic proteins.


Asunto(s)
Ácidos Nucleicos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética/genética
20.
Structure ; 18(9): 1075-82, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826334

RESUMEN

For high-throughput structural studies of protein complexes of composition inferred from proteomics data, it is crucial that candidate complexes are selected accurately. Herein, we exemplify a procedure that combines a bioinformatics tool for complex selection with in vivo validation, to deliver structural results in a medium-throughout manner. We have selected a set of 20 yeast complexes, which were predicted to be feasible by either an automated bioinformatics algorithm, by manual inspection of primary data, or by literature searches. These complexes were validated with two straightforward and efficient biochemical assays, and heterologous expression technologies of complex components were then used to produce the complexes to assess their feasibility experimentally. Approximately one-half of the selected complexes were useful for structural studies, and we detail one particular success story. Our results underscore the importance of accurate target selection and validation in avoiding transient, unstable, or simply nonexistent complexes from the outset.


Asunto(s)
Biología Computacional/métodos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Bases de Datos de Proteínas , Proteómica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...